Opencv檢測多個圓形(霍夫圓檢測,輪廓面積篩選)
主要是利用霍夫圓檢測、面積篩選等完成多個圓形檢測,具體代碼及結果如下。
第一部分是頭文件(common.h):
#pragma once #include<opencv2/opencv.hpp> #include<opencv2/highgui.hpp> #include<iostream> using namespace std; using namespace cv; extern Mat src; void imageBasicInformation(Mat& src);//圖像基本信息 const Mat houghCirclePre(Mat& srcPre);//霍夫圓檢測預處理 void houghCircle(Mat& srcPreHough);//霍夫圓檢測 const Mat RectCirclePre(Mat& srcPre);//面積篩選擬合圓的預處理 void AreaCircles(Mat& AreaInput);//面積篩選擬合圓檢測
第二部分是主函數:
#include"common.h" Mat src; int main() { src = imread("1.jpg",1); if (src.empty()) { cout << "圖像不存在!" << endl; } else { namedWindow("原圖", 1); imshow("原圖", src); imageBasicInformation(src); Mat srcPreHough = houghCirclePre(src); houghCircle(srcPreHough); Mat RectCir = RectCirclePre(src); AreaCircles(RectCir); waitKey(0); destroyAllWindows(); } return 0; }
第三部分為霍夫圓檢測函數(hough.cpp)
主要包括輸出圖像的基本信息函數:void imageBasicInformation(Mat& src)
霍夫圓檢測預處理函數:const Mat houghCirclePre(Mat& srcPre)
霍夫圓檢測函數:void houghCircle(Mat& srcPreHough)
#include"common.h" Mat graySrc, srcPre;//灰度圖,霍夫檢測預處理, Mat threshold_grayaSrc;//二值化圖 Mat erode_threshold_graySrc, dilate_threshold_graySrc;//二值化後腐蝕,二值化後膨脹 void imageBasicInformation(Mat& src) { int cols = src.cols; int rows = src.rows; int channels = src.channels(); cout << "圖像寬為:" << cols << endl; cout << "圖像高為:" << rows << endl; cout << "圖像通道數:" << channels << endl; } const Mat houghCirclePre(Mat& srcPre) { double houghCirclePreTime = static_cast<double>(getTickCount()); cvtColor(srcPre, graySrc, COLOR_BGR2GRAY); GaussianBlur(graySrc, graySrc, Size(3, 3), 2, 2);//濾波 threshold(graySrc, threshold_grayaSrc, 150, 255, 1);//二值化 Mat element = getStructuringElement(MORPH_RECT, Size(15, 15)); dilate(threshold_grayaSrc, dilate_threshold_graySrc, element);//膨脹 erode(dilate_threshold_graySrc, erode_threshold_graySrc, element);//腐蝕 houghCirclePreTime = ((double)getTickCount() - houghCirclePreTime) / getTickFrequency(); cout << "霍夫圓預處理時間為:" << houghCirclePreTime << "秒" << endl; return erode_threshold_graySrc; } void houghCircle(Mat& srcPreHough) { cout << "進入霍夫圓檢測" << endl; vector<Vec3f> circles; HoughCircles(srcPreHough, circles, HOUGH_GRADIENT, 1, 60, 1, 35, 0, 0); cout << "圓的個數" << circles.size() << endl; for (size_t i = 0;i < circles.size();i++) { Point center(cvRound(circles[i][0]), cvRound(circles[i][1])); int radius = cvRound(circles[i][2]); circle(src, center, 3, Scalar(0, 255, 0), -1, 8, 0);//畫圓心 circle(src, center, radius, Scalar(0, 0, 255), 3, 8, 0);//畫圓 } namedWindow("霍夫檢測結果", 0); imshow("霍夫檢測結果", src); imwrite("霍夫圓檢測結果.jpg", src);//保存檢測結果 }
第四部分為利用面積篩選擬合圓檢測(AreaCircle.cpp)
主要包括預處理函數:const Mat RectCirclePre(Mat& srcPre)
面積篩選擬合圓檢測函數:void AreaCircles(Mat& AreaInput)
#include"common.h" Mat graySrc, srcPre;//灰度圖,霍夫檢測預處理, Mat threshold_grayaSrc;//二值化圖 Mat erode_threshold_graySrc, dilate_threshold_graySrc;//二值化後腐蝕,二值化後膨脹 void imageBasicInformation(Mat& src) { int cols = src.cols; int rows = src.rows; int channels = src.channels(); cout << "圖像寬為:" << cols << endl; cout << "圖像高為:" << rows << endl; cout << "圖像通道數:" << channels << endl; } const Mat houghCirclePre(Mat& srcPre) { double houghCirclePreTime = static_cast<double>(getTickCount()); cvtColor(srcPre, graySrc, COLOR_BGR2GRAY); GaussianBlur(graySrc, graySrc, Size(3, 3), 2, 2);//濾波 threshold(graySrc, threshold_grayaSrc, 150, 255, 1);//二值化 Mat element = getStructuringElement(MORPH_RECT, Size(15, 15)); dilate(threshold_grayaSrc, dilate_threshold_graySrc, element);//膨脹 erode(dilate_threshold_graySrc, erode_threshold_graySrc, element);//腐蝕 houghCirclePreTime = ((double)getTickCount() - houghCirclePreTime) / getTickFrequency(); cout << "霍夫圓預處理時間為:" << houghCirclePreTime << "秒" << endl; return erode_threshold_graySrc; } void houghCircle(Mat& srcPreHough) { cout << "進入霍夫圓檢測" << endl; vector<Vec3f> circles; HoughCircles(srcPreHough, circles, HOUGH_GRADIENT, 1, 60, 1, 35, 0, 0); cout << "圓的個數" << circles.size() << endl; for (size_t i = 0;i < circles.size();i++) { Point center(cvRound(circles[i][0]), cvRound(circles[i][1])); int radius = cvRound(circles[i][2]); circle(src, center, 3, Scalar(0, 255, 0), -1, 8, 0);//畫圓心 circle(src, center, radius, Scalar(0, 0, 255), 3, 8, 0);//畫圓 } namedWindow("霍夫檢測結果", 0); imshow("霍夫檢測結果", src); imwrite("霍夫圓檢測結果.jpg", src);//保存檢測結果 }
結果如下(自己畫的兩個圓):
原圖:
以下為霍夫圓檢測結果:
以下為面積篩選擬合圓結果:
到此這篇關於Opencv檢測多個圓形(霍夫圓檢測,輪廓面積篩選)的文章就介紹到這瞭,更多相關Opencv檢測圓形內容請搜索WalkonNet以前的文章或繼續瀏覽下面的相關文章希望大傢以後多多支持WalkonNet!