pytorch_detach 切斷網絡反傳方式

detach

官方文檔中,對這個方法是這麼介紹的。

    detach = _add_docstr(_C._TensorBase.detach, r"""
    Returns a new Tensor, detached from the current graph.
    The result will never require gradient.
    .. note::
      Returned Tensor uses the same data tensor as the original one.
      In-place modifications on either of them will be seen, and may trigger
      errors in correctness checks.
    """)

返回一個新的從當前圖中分離的 Variable。

返回的 Variable 永遠不會需要梯度

如果 被 detach 的Variable volatile=True, 那麼 detach 出來的 volatile 也為 True

還有一個註意事項,即:返回的 Variable 和 被 detach 的Variable 指向同一個 tensor

import torch
from torch.nn import init
t1 = torch.tensor([1., 2.],requires_grad=True)
t2 = torch.tensor([2., 3.],requires_grad=True)
v3 = t1 + t2
v3_detached = v3.detach()
v3_detached.data.add_(t1) # 修改瞭 v3_detached Variable中 tensor 的值
print(v3, v3_detached)    # v3 中tensor 的值也會改變
print(v3.requires_grad,v3_detached.requires_grad)
'''
tensor([4., 7.], grad_fn=<AddBackward0>) tensor([4., 7.])
True False
'''

在pytorch中通過拷貝需要切斷位置前的tensor實現這個功能。tensor中拷貝的函數有兩個,一個是clone(),另外一個是copy_(),clone()相當於完全復制瞭之前的tensor,他的梯度也會復制,而且在反向傳播時,克隆的樣本和結果是等價的,可以簡單的理解為clone隻是給瞭同一個tensor不同的代號,和‘=’等價。所以如果想要生成一個新的分開的tensor,請使用copy_()。

不過對於這樣的操作,pytorch中有專門的函數——detach()。

用戶自己創建的節點是leaf_node(如圖中的abc三個節點),不依賴於其他變量,對於leaf_node不能進行in_place操作.根節點是計算圖的最終目標(如圖y),通過鏈式法則可以計算出所有節點相對於根節點的梯度值.這一過程通過調用root.backward()就可以實現.

因此,detach所做的就是,重新聲明一個變量,指向原變量的存放位置,但是requires_grad為false.更深入一點的理解是,計算圖從detach過的變量這裡就斷瞭, 它變成瞭一個leaf_node.即使之後重新將它的requires_node置為true,它也不會具有梯度.

pytorch 梯度

(0.4之後),tensor和variable合並,tensor具有grad、grad_fn等屬性;

默認創建的tensor,grad默認為False, 如果當前tensor_grad為None,則不會向前傳播,如果有其它支路具有grad,則隻傳播其它支路的grad

# 默認創建requires_grad = False的Tensor
x = torch.ones(1)   # create a tensor with requires_grad=False (default)
print(x.requires_grad)
 # out: False
 
 # 創建另一個Tensor,同樣requires_grad = False
y = torch.ones(1)  # another tensor with requires_grad=False
 # both inputs have requires_grad=False. so does the output
z = x + y
 # 因為兩個Tensor x,y,requires_grad=False.都無法實現自動微分,
 # 所以操作(operation)z=x+y後的z也是無法自動微分,requires_grad=False
print(z.requires_grad)
 # out: False
 
 # then autograd won't track this computation. let's verify!
 # 因而無法autograd,程序報錯
# z.backward()
 # out:程序報錯:RuntimeError: element 0 of tensors does not require grad and does not have a grad_fn
    
# now create a tensor with requires_grad=True
w = torch.ones(1, requires_grad=True)
print(w.requires_grad)
 # out: True
 
 # add to the previous result that has require_grad=False
 # 因為total的操作中輸入Tensor w的requires_grad=True,因而操作可以進行反向傳播和自動求導。
total = w + z
# the total sum now requires grad!
total.requires_grad
# out: True
# autograd can compute the gradients as well
total.backward()
print(w.grad)
#out: tensor([ 1.])
# and no computation is wasted to compute gradients for x, y and z, which don't require grad
# 由於z,x,y的requires_grad=False,所以並沒有計算三者的梯度
z.grad == x.grad == y.grad == None
# True

nn.Paramter

import torch.nn.functional as F
# With square kernels and equal stride
filters = torch.randn(8,4,3,3)
weiths = torch.nn.Parameter(torch.randn(8,4,3,3))
inputs = torch.randn(1,4,5,5)
out = F.conv2d(inputs, weiths, stride=2,padding=1)
print(out.shape)
con2d = torch.nn.Conv2d(4,8,3,stride=2,padding=1)
out_2 = con2d(inputs)
print(out_2.shape)

補充:Pytorch-detach()用法

目的:

神經網絡的訓練有時候可能希望保持一部分的網絡參數不變,隻對其中一部分的參數進行調整。

或者訓練部分分支網絡,並不讓其梯度對主網絡的梯度造成影響.這時候我們就需要使用detach()函數來切斷一些分支的反向傳播.

1 tensor.detach()

返回一個新的tensor,從當前計算圖中分離下來。但是仍指向原變量的存放位置,不同之處隻是requirse_grad為false.得到的這個tensir永遠不需要計算器梯度,不具有grad.

即使之後重新將它的requires_grad置為true,它也不會具有梯度grad.這樣我們就會繼續使用這個新的tensor進行計算,後面當我們進行反向傳播時,到該調用detach()的tensor就會停止,不能再繼續向前進行傳播.

註意:

使用detach返回的tensor和原始的tensor共同一個內存,即一個修改另一個也會跟著改變。

比如正常的例子是:

import torch 
a = torch.tensor([1, 2, 3.], requires_grad=True)
print(a)
print(a.grad)
out = a.sigmoid()
 
out.sum().backward()
print(a.grad)

輸出

tensor([1., 2., 3.], requires_grad=True)

None

tensor([0.1966, 0.1050, 0.0452])

1.1 當使用detach()分離tensor但是沒有更改這個tensor時,並不會影響backward():

import torch 
a = torch.tensor([1, 2, 3.], requires_grad=True)
print(a.grad)
out = a.sigmoid()
print(out)
 
#添加detach(),c的requires_grad為False
c = out.detach()
print(c)
 
#這時候沒有對c進行更改,所以並不會影響backward()
out.sum().backward()
print(a.grad)
 
'''返回:
None
tensor([0.7311, 0.8808, 0.9526], grad_fn=<SigmoidBackward>)
tensor([0.7311, 0.8808, 0.9526])
tensor([0.1966, 0.1050, 0.0452])
'''

以上為個人經驗,希望能給大傢一個參考,也希望大傢多多支持WalkonNet。如有錯誤或未考慮完全的地方,望不吝賜教。

推薦閱讀: