Pytorch使用shuffle打亂數據的操作

這個東西算是我被這個shuffle坑瞭的一個總結吧!

首先我得告訴你一件事,那就是pytorch中的tensor,如果直接使用random.shuffle打亂數據,或者使用下面的方式,自己定義直接寫。

 def Shuffle(self, x, y,random=None, int=int):
         if random is None:
            random = self.random
                 for i in range(len(x)):
            j = int(random() * (i + 1))
            if j<=len(x)-1:
                x[i],x[j]=x[j],x[i]
                y[i],y[j]=y[j],y[i]
          retrun x,y

那你就會收獲一堆的混亂數據,因為使用這種交換的方式對tensor類型的數據進行操作,會導致裡面的數據出現重復復制的問題。

比如我y中的數據為【0,1,0,1,0,1】

在經過幾次shuffle,其中的數據就變成瞭【1,1,1,1,1,1】。

數據頓時出現混亂。

正確的方式是先轉成numpy,再進行交換數據

比如:

 def Shuffle(self, x, y,random=None, int=int):
        """x, random=random.random -> shuffle list x in place; return None.
        Optional arg random is a 0-argument function returning a random
        float in [0.0, 1.0); by default, the standard random.random.
        """
        if random is None:
            random = self.random #random=random.random
        #轉成numpy
        if torch.is_tensor(x)==True:
            if self.use_cuda==True:
               x=x.cpu().numpy()
            else:
               x=x.numpy()
        if torch.is_tensor(y) == True:
            if self.use_cuda==True:
               y=y.cpu().numpy()
            else:
               y=y.numpy()
        #開始隨機置換
        for i in range(len(x)):
            j = int(random() * (i + 1))
            if j<=len(x)-1:#交換
                x[i],x[j]=x[j],x[i]
                y[i],y[j]=y[j],y[i]
        #轉回tensor
        if self.use_cuda == True:
            x=torch.from_numpy(x).cuda()
            y=torch.from_numpy(y).cuda()
        else:
            x = torch.from_numpy(x)
            y = torch.from_numpy(y)
        return x,y

補充:python對訓練數據集shuffle(打亂)的一些方式

1.通過數組來shuffle

image_list=[]           # list of images
label_list=[]           # list of labels
 
temp = np.array([image_list, label_list])
temp = temp.transpose()
np.random.shuffle(temp)
 
images = temp[:, 0]     # array of images   (N,)
labels = temp[:, 1]

2.通過索引 Index 來 shuffle

image_list=[]           # list of images
label_list=[]           # list of labels
 
##如果image_list存的是讀取的特征數據,而不是圖片路徑,不要註釋後面兩句(list無法索引內部list)
#[list indices must be integers or slices, not list]
#image_list = np.array(image_list)
#label_list = np.array(label_list)
 
index = [i for i in range(len(image_list))]
np.random.shuffle(index)
images = image_list[index]
labels = label_list[index]

以上為個人經驗,希望能給大傢一個參考,也希望大傢多多支持WalkonNet。

推薦閱讀: