python生成器generator:深度學習讀取batch圖片的操作
在深度學習中訓練模型的過程中讀取圖片數據,如果將圖片數據全部讀入內存是不現實的,所以有必要使用生成器來讀取數據。
通過列表生成式,我們可以直接創建一個列表。但是,受到內存限制,列表容量肯定是有限的。而且,創建一個包含100萬個元素的列表,不僅占用很大的存儲空間,如果我們僅僅需要訪問前面幾個元素,那後面絕大多數元素占用的空間都白白浪費瞭。
所以,如果列表元素可以按照某種算法推算出來,那我們是否可以在循環的過程中不斷推算出後續的元素呢?這樣就不必創建完整的list,從而節省大量的空間。在Python中,這種一邊循環一邊計算的機制,稱為生成器:generator。
創建generator有多種方法,第一種方法很簡單
隻要把一個列表生成式的[]改成(),就創建瞭一個generator:
>>> L = [x * x for x in range(10)] >>> L [0, 1, 4, 9, 16, 25, 36, 49, 64, 81] >>> g = (x * x for x in range(10)) >>> g <generator object <genexpr> at 0x1022ef630>
list中的元素可以直接打印出來 ,generator要一個一個打印出來,
可以通過next()函數獲得generator的下一個返回值:
>>> next(g)
0
>>> next(g)
1
>>> next(g)
4
>>> next(g)
9
>>> next(g)
16
generator保存的是算法,每次調用next(g),就計算出g的下一個元素的值,直到計算到最後一個元素,沒有更多的元素時,拋出StopIteration的錯誤。
上面這種不斷調用next(g)實在是太變態瞭
正確的方法是使用for循環,因為generator也是可迭代對象:
>>> g = (x * x for x in range(10)) >>> for n in g: ... print(n)
著名的斐波拉契數列(Fibonacci),除第一個和第二個數外,任意一個數都可由前兩個數相加得到:
1, 1, 2, 3, 5, 8, 13, 21, 34, …
斐波拉契數列用列表生成式寫不出來
但是,用函數把它打印出來卻很容易:
def fib(max): n, a, b = 0, 0, 1 while n < max: print(b) a, b = b, a + b n = n + 1 return 'done'
仔細觀察,可以看出,fib函數實際上是定義瞭斐波拉契數列的推算規則,可以從第一個元素開始,推算出後續任意的元素,這種邏輯其實非常類似generator。
也就是說,上面的函數和generator僅一步之遙。要把fib函數變成generator,隻需要把print(b)改為yield b就可以瞭:
def fib(max): n, a, b = 0, 0, 1 while n < max: yield b a, b = b, a + b n = n + 1 return 'done'
這就是定義generator的另一種方法。如果一個函數定義中包含yield關鍵字,那麼這個函數就不再是一個普通函數,而是一個generator:
>>> f = fib(6) >>> f <generator object fib at 0x104feaaa0>
這裡,最難理解的就是generator和函數的執行流程不一樣。函數是順序執行,遇到return語句或者最後一行函數語句就返回。而變成generator的函數,在每次調用next()的時候執行,遇到yield語句返回,再次執行時從上次返回的yield語句處繼續執行。
在循環過程中不斷調用yield,就會不斷中斷。當然要給循環設置一個條件來退出循環,不然就會產生一個無限數列出來。
同樣的,把函數改成generator後,我們基本上從來不會用next()來獲取下一個返回值,而是直接使用for循環來迭代:
>>> for n in fib(6): ... print(n) ...
最後在讀取圖片的實際應用中的代碼如下:
def train_data(train_file,batch_size,resize_shape): datas, labels = read_data(train_file) num_batch = len(datas)//batch_size for i in range(num_batch): imgs = [] train_datas = datas[batch_size*i:batch_size*(i+1)] train_lables = labels[batch_size*i:batch_size*(i+1)] for img_path in train_datas: img = cv2.imread(img_path) img = cv2.resize(img,resize_shape) img = img/255 #歸一化處理 imgs.append(img) yield np.array(imgs),np.array(train_lables)
補充:深度學習算法–fit_generator()函數使用
如果我們數據量很大,那麼是不可能將所有數據載入內存的,必將導致內存泄漏,
這時候我們可以用fit_generator函數來進行訓練
from keras.datasets import imdb from keras.preprocessing.sequence import pad_sequences from keras.models import Sequential from keras import layers import numpy as np import random from sklearn.metrics import f1_score, accuracy_score max_features = 100 maxlen = 50 batch_size = 320 (x_train, y_train), (x_test, y_test) = imdb.load_data(num_words=max_features) x_train = pad_sequences(x_train, maxlen=maxlen) x_test = pad_sequences(x_test, maxlen=maxlen) def generator(): while 1: row = np.random.randint(0, len(x_train), size=batch_size) x = np.zeros((batch_size, x_train.shape[-1])) y = np.zeros((batch_size,)) x = x_train[row] y = y_train[row] yield x, y # generator() model = Sequential() model.add(layers.Embedding(max_features, 32, input_length=maxlen)) model.add(layers.GRU(64, return_sequences=True)) model.add(layers.GRU(32)) # model.add(layers.Flatten()) # model.add(layers.Dense(32,activation='relu')) model.add(layers.Dense(1, activation='sigmoid')) model.compile(optimizer='rmsprop', loss='binary_crossentropy', metrics=['acc']) print(model.summary()) # history = model.fit(x_train, y_train, epochs=1,batch_size=32, validation_split=0.2) # Keras中的fit()函數傳入的x_train和y_train是被完整的加載進內存的,當然用起來很方便,但是如果我們數據量很大, # 那麼是不可能將所有數據載入內存的,必將導致內存泄漏,這時候我們可以用fit_generator函數來進行訓練。 # fit_generator函數必須傳入一個生成器,我們的訓練數據也是通過生成器產生的 history = model.fit_generator(generator(), epochs=1, steps_per_epoch=len(x_train) // (batch_size)) print(model.evaluate(x_test, y_test)) y = model.predict_classes(x_test) print(accuracy_score(y_test, y))
以上為個人經驗,希望能給大傢一個參考,也希望大傢多多支持WalkonNet。
推薦閱讀:
- 手把手教你使用TensorFlow2實現RNN
- python之tensorflow手把手實例講解貓狗識別實現
- python之tensorflow手把手實例講解斑馬線識別實現
- tensorflow2.0實現復雜神經網絡(多輸入多輸出nn,Resnet)
- Python集成學習之Blending算法詳解