PyTorch梯度下降反向傳播

前言:

反向傳播的目的是計算成本函數C對網絡中任意w或b的偏導數。一旦我們有瞭這些偏導數,我們將通過一些常數 α的乘積和該數量相對於成本函數的偏導數來更新網絡中的權重和偏差。這是流行的梯度下降算法。而偏導數給出瞭最大上升的方向。因此,關於反向傳播算法,我們繼續查看下文。

我們向相反的方向邁出瞭一小步——最大下降的方向,也就是將我們帶到成本函數的局部最小值的方向

如題:

意思是利用這個二次模型來預測數據,減小損失函數(MSE)的值。

代碼如下:

import torch
import matplotlib.pyplot as plt
import os
os.environ["KMP_DUPLICATE_LIB_OK"]  =  "TRUE"
# 數據集
x_data = [1.0,2.0,3.0]
y_data = [2.0,4.0,6.0]
# 權重參數初始值均為1
w = torch.tensor([1.0,1.0,1.0])
w.requires_grad = True    # 需要計算梯度

# 前向傳播
def forward(x):
    return w[0]*(x**2)+w[1]*x+w[2]
# 計算損失
def loss(x,y):
    y_pred = forward(x)
    return (y_pred-y) ** 2

# 訓練模塊
print('predict (before tranining) ',4, forward(4).item())
epoch_list = []
w_list = []
loss_list = []
for epoch in range(1000):
    for x,y in zip(x_data,y_data):
        l = loss(x,y)
        l.backward()        # 後向傳播
        print('\tgrad: ',x,y,w.grad.data)
        w.data = w.data - 0.01 * w.grad.data        # 梯度下降
        
        w.grad.data.zero_()    # 梯度清零操作
        
    print('progress: ',epoch,l.item())
    epoch_list.append(epoch)
    w_list.append(w.data)
    loss_list.append(l.item())
print('predict (after tranining) ',4, forward(4).item())

# 繪圖
plt.plot(epoch_list,loss_list,'b')
plt.xlabel('Epoch')
plt.ylabel('Loss')
plt.grid()
plt.show()

結果如下:

predict (before tranining)  4 21.0
    grad:  1.0 2.0 tensor([2., 2., 2.])
    grad:  2.0 4.0 tensor([22.8800, 11.4400,  5.7200])
    grad:  3.0 6.0 tensor([77.0472, 25.6824,  8.5608])
progress:  0 18.321826934814453
    grad:  1.0 2.0 tensor([-1.1466, -1.1466, -1.1466])
    grad:  2.0 4.0 tensor([-15.5367,  -7.7683,  -3.8842])
    grad:  3.0 6.0 tensor([-30.4322, -10.1441,  -3.3814])
progress:  1 2.858394145965576
    grad:  1.0 2.0 tensor([0.3451, 0.3451, 0.3451])
    grad:  2.0 4.0 tensor([2.4273, 1.2137, 0.6068])
    grad:  3.0 6.0 tensor([19.4499,  6.4833,  2.1611])
progress:  2 1.1675907373428345
    grad:  1.0 2.0 tensor([-0.3224, -0.3224, -0.3224])
    grad:  2.0 4.0 tensor([-5.8458, -2.9229, -1.4614])
    grad:  3.0 6.0 tensor([-3.8829, -1.2943, -0.4314])
progress:  3 0.04653334245085716
    grad:  1.0 2.0 tensor([0.0137, 0.0137, 0.0137])
    grad:  2.0 4.0 tensor([-1.9141, -0.9570, -0.4785])
    grad:  3.0 6.0 tensor([6.8557, 2.2852, 0.7617])
progress:  4 0.14506366848945618
    grad:  1.0 2.0 tensor([-0.1182, -0.1182, -0.1182])
    grad:  2.0 4.0 tensor([-3.6644, -1.8322, -0.9161])
    grad:  3.0 6.0 tensor([1.7455, 0.5818, 0.1939])
progress:  5 0.009403289295732975
    grad:  1.0 2.0 tensor([-0.0333, -0.0333, -0.0333])
    grad:  2.0 4.0 tensor([-2.7739, -1.3869, -0.6935])
    grad:  3.0 6.0 tensor([4.0140, 1.3380, 0.4460])
progress:  6 0.04972923547029495
    grad:  1.0 2.0 tensor([-0.0501, -0.0501, -0.0501])
    grad:  2.0 4.0 tensor([-3.1150, -1.5575, -0.7788])
    grad:  3.0 6.0 tensor([2.8534, 0.9511, 0.3170])
progress:  7 0.025129113346338272
    grad:  1.0 2.0 tensor([-0.0205, -0.0205, -0.0205])
    grad:  2.0 4.0 tensor([-2.8858, -1.4429, -0.7215])
    grad:  3.0 6.0 tensor([3.2924, 1.0975, 0.3658])
progress:  8 0.03345605731010437
    grad:  1.0 2.0 tensor([-0.0134, -0.0134, -0.0134])
    grad:  2.0 4.0 tensor([-2.9247, -1.4623, -0.7312])
    grad:  3.0 6.0 tensor([2.9909, 0.9970, 0.3323])
progress:  9 0.027609655633568764
    grad:  1.0 2.0 tensor([0.0033, 0.0033, 0.0033])
    grad:  2.0 4.0 tensor([-2.8414, -1.4207, -0.7103])
    grad:  3.0 6.0 tensor([3.0377, 1.0126, 0.3375])
progress:  10 0.02848036028444767
    grad:  1.0 2.0 tensor([0.0148, 0.0148, 0.0148])
    grad:  2.0 4.0 tensor([-2.8174, -1.4087, -0.7043])
    grad:  3.0 6.0 tensor([2.9260, 0.9753, 0.3251])
progress:  11 0.02642466314136982
    grad:  1.0 2.0 tensor([0.0280, 0.0280, 0.0280])
    grad:  2.0 4.0 tensor([-2.7682, -1.3841, -0.6920])
    grad:  3.0 6.0 tensor([2.8915, 0.9638, 0.3213])
progress:  12 0.025804826989769936
    grad:  1.0 2.0 tensor([0.0397, 0.0397, 0.0397])
    grad:  2.0 4.0 tensor([-2.7330, -1.3665, -0.6832])
    grad:  3.0 6.0 tensor([2.8243, 0.9414, 0.3138])
progress:  13 0.02462013065814972
    grad:  1.0 2.0 tensor([0.0514, 0.0514, 0.0514])
    grad:  2.0 4.0 tensor([-2.6934, -1.3467, -0.6734])
    grad:  3.0 6.0 tensor([2.7756, 0.9252, 0.3084])
progress:  14 0.023777369409799576
    grad:  1.0 2.0 tensor([0.0624, 0.0624, 0.0624])
    grad:  2.0 4.0 tensor([-2.6580, -1.3290, -0.6645])
    grad:  3.0 6.0 tensor([2.7213, 0.9071, 0.3024])
progress:  15 0.0228563379496336
    grad:  1.0 2.0 tensor([0.0731, 0.0731, 0.0731])
    grad:  2.0 4.0 tensor([-2.6227, -1.3113, -0.6557])
    grad:  3.0 6.0 tensor([2.6725, 0.8908, 0.2969])
progress:  16 0.022044027224183083
    grad:  1.0 2.0 tensor([0.0833, 0.0833, 0.0833])
    grad:  2.0 4.0 tensor([-2.5893, -1.2946, -0.6473])
    grad:  3.0 6.0 tensor([2.6240, 0.8747, 0.2916])
progress:  17 0.02125072106719017
    grad:  1.0 2.0 tensor([0.0931, 0.0931, 0.0931])
    grad:  2.0 4.0 tensor([-2.5568, -1.2784, -0.6392])
    grad:  3.0 6.0 tensor([2.5780, 0.8593, 0.2864])
progress:  18 0.020513182505965233
    grad:  1.0 2.0 tensor([0.1025, 0.1025, 0.1025])
    grad:  2.0 4.0 tensor([-2.5258, -1.2629, -0.6314])
    grad:  3.0 6.0 tensor([2.5335, 0.8445, 0.2815])
progress:  19 0.019810274243354797
    grad:  1.0 2.0 tensor([0.1116, 0.1116, 0.1116])
    grad:  2.0 4.0 tensor([-2.4958, -1.2479, -0.6239])
    grad:  3.0 6.0 tensor([2.4908, 0.8303, 0.2768])
progress:  20 0.019148115068674088
    grad:  1.0 2.0 tensor([0.1203, 0.1203, 0.1203])
    grad:  2.0 4.0 tensor([-2.4669, -1.2335, -0.6167])
    grad:  3.0 6.0 tensor([2.4496, 0.8165, 0.2722])
progress:  21 0.018520694226026535
    grad:  1.0 2.0 tensor([0.1286, 0.1286, 0.1286])
    grad:  2.0 4.0 tensor([-2.4392, -1.2196, -0.6098])
    grad:  3.0 6.0 tensor([2.4101, 0.8034, 0.2678])
progress:  22 0.017927465960383415
    grad:  1.0 2.0 tensor([0.1367, 0.1367, 0.1367])
    grad:  2.0 4.0 tensor([-2.4124, -1.2062, -0.6031])
    grad:  3.0 6.0 tensor([2.3720, 0.7907, 0.2636])
progress:  23 0.01736525259912014
    grad:  1.0 2.0 tensor([0.1444, 0.1444, 0.1444])
    grad:  2.0 4.0 tensor([-2.3867, -1.1933, -0.5967])
    grad:  3.0 6.0 tensor([2.3354, 0.7785, 0.2595])
progress:  24 0.016833148896694183
    grad:  1.0 2.0 tensor([0.1518, 0.1518, 0.1518])
    grad:  2.0 4.0 tensor([-2.3619, -1.1810, -0.5905])
    grad:  3.0 6.0 tensor([2.3001, 0.7667, 0.2556])
progress:  25 0.01632905937731266
    grad:  1.0 2.0 tensor([0.1589, 0.1589, 0.1589])
    grad:  2.0 4.0 tensor([-2.3380, -1.1690, -0.5845])
    grad:  3.0 6.0 tensor([2.2662, 0.7554, 0.2518])
progress:  26 0.01585075818002224
    grad:  1.0 2.0 tensor([0.1657, 0.1657, 0.1657])
    grad:  2.0 4.0 tensor([-2.3151, -1.1575, -0.5788])
    grad:  3.0 6.0 tensor([2.2336, 0.7445, 0.2482])
progress:  27 0.015397666022181511
    grad:  1.0 2.0 tensor([0.1723, 0.1723, 0.1723])
    grad:  2.0 4.0 tensor([-2.2929, -1.1465, -0.5732])
    grad:  3.0 6.0 tensor([2.2022, 0.7341, 0.2447])
progress:  28 0.014967591501772404
    grad:  1.0 2.0 tensor([0.1786, 0.1786, 0.1786])
    grad:  2.0 4.0 tensor([-2.2716, -1.1358, -0.5679])
    grad:  3.0 6.0 tensor([2.1719, 0.7240, 0.2413])
progress:  29 0.014559715054929256
    grad:  1.0 2.0 tensor([0.1846, 0.1846, 0.1846])
    grad:  2.0 4.0 tensor([-2.2511, -1.1255, -0.5628])
    grad:  3.0 6.0 tensor([2.1429, 0.7143, 0.2381])
progress:  30 0.014172340743243694
    grad:  1.0 2.0 tensor([0.1904, 0.1904, 0.1904])
    grad:  2.0 4.0 tensor([-2.2313, -1.1157, -0.5578])
    grad:  3.0 6.0 tensor([2.1149, 0.7050, 0.2350])
progress:  31 0.013804304413497448
    grad:  1.0 2.0 tensor([0.1960, 0.1960, 0.1960])
    grad:  2.0 4.0 tensor([-2.2123, -1.1061, -0.5531])
    grad:  3.0 6.0 tensor([2.0879, 0.6960, 0.2320])
progress:  32 0.013455045409500599
    grad:  1.0 2.0 tensor([0.2014, 0.2014, 0.2014])
    grad:  2.0 4.0 tensor([-2.1939, -1.0970, -0.5485])
    grad:  3.0 6.0 tensor([2.0620, 0.6873, 0.2291])
progress:  33 0.013122711330652237
    grad:  1.0 2.0 tensor([0.2065, 0.2065, 0.2065])
    grad:  2.0 4.0 tensor([-2.1763, -1.0881, -0.5441])
    grad:  3.0 6.0 tensor([2.0370, 0.6790, 0.2263])
progress:  34 0.01280694268643856
    grad:  1.0 2.0 tensor([0.2114, 0.2114, 0.2114])
    grad:  2.0 4.0 tensor([-2.1592, -1.0796, -0.5398])
    grad:  3.0 6.0 tensor([2.0130, 0.6710, 0.2237])
progress:  35 0.012506747618317604
    grad:  1.0 2.0 tensor([0.2162, 0.2162, 0.2162])
    grad:  2.0 4.0 tensor([-2.1428, -1.0714, -0.5357])
    grad:  3.0 6.0 tensor([1.9899, 0.6633, 0.2211])
progress:  36 0.012220758944749832
    grad:  1.0 2.0 tensor([0.2207, 0.2207, 0.2207])
    grad:  2.0 4.0 tensor([-2.1270, -1.0635, -0.5317])
    grad:  3.0 6.0 tensor([1.9676, 0.6559, 0.2186])
progress:  37 0.01194891706109047
    grad:  1.0 2.0 tensor([0.2251, 0.2251, 0.2251])
    grad:  2.0 4.0 tensor([-2.1118, -1.0559, -0.5279])
    grad:  3.0 6.0 tensor([1.9462, 0.6487, 0.2162])
progress:  38 0.011689926497638226
    grad:  1.0 2.0 tensor([0.2292, 0.2292, 0.2292])
    grad:  2.0 4.0 tensor([-2.0971, -1.0485, -0.5243])
    grad:  3.0 6.0 tensor([1.9255, 0.6418, 0.2139])
progress:  39 0.01144315768033266
    grad:  1.0 2.0 tensor([0.2333, 0.2333, 0.2333])
    grad:  2.0 4.0 tensor([-2.0829, -1.0414, -0.5207])
    grad:  3.0 6.0 tensor([1.9057, 0.6352, 0.2117])
progress:  40 0.011208509095013142
    grad:  1.0 2.0 tensor([0.2371, 0.2371, 0.2371])
    grad:  2.0 4.0 tensor([-2.0693, -1.0346, -0.5173])
    grad:  3.0 6.0 tensor([1.8865, 0.6288, 0.2096])
progress:  41 0.0109840864315629
    grad:  1.0 2.0 tensor([0.2408, 0.2408, 0.2408])
    grad:  2.0 4.0 tensor([-2.0561, -1.0280, -0.5140])
    grad:  3.0 6.0 tensor([1.8681, 0.6227, 0.2076])
progress:  42 0.010770938359200954
    grad:  1.0 2.0 tensor([0.2444, 0.2444, 0.2444])
    grad:  2.0 4.0 tensor([-2.0434, -1.0217, -0.5108])
    grad:  3.0 6.0 tensor([1.8503, 0.6168, 0.2056])
progress:  43 0.010566935874521732
    grad:  1.0 2.0 tensor([0.2478, 0.2478, 0.2478])
    grad:  2.0 4.0 tensor([-2.0312, -1.0156, -0.5078])
    grad:  3.0 6.0 tensor([1.8332, 0.6111, 0.2037])
progress:  44 0.010372749529778957
    grad:  1.0 2.0 tensor([0.2510, 0.2510, 0.2510])
    grad:  2.0 4.0 tensor([-2.0194, -1.0097, -0.5048])
    grad:  3.0 6.0 tensor([1.8168, 0.6056, 0.2019])
progress:  45 0.010187389329075813
    grad:  1.0 2.0 tensor([0.2542, 0.2542, 0.2542])

    grad:  2.0 4.0 tensor([-2.0080, -1.0040, -0.5020])
    grad:  3.0 6.0 tensor([1.8009, 0.6003, 0.2001])
progress:  46 0.010010283440351486
    grad:  1.0 2.0 tensor([0.2572, 0.2572, 0.2572])
    grad:  2.0 4.0 tensor([-1.9970, -0.9985, -0.4992])
    grad:  3.0 6.0 tensor([1.7856, 0.5952, 0.1984])
progress:  47 0.00984097272157669
    grad:  1.0 2.0 tensor([0.2600, 0.2600, 0.2600])
    grad:  2.0 4.0 tensor([-1.9864, -0.9932, -0.4966])
    grad:  3.0 6.0 tensor([1.7709, 0.5903, 0.1968])
progress:  48 0.009679674170911312
    grad:  1.0 2.0 tensor([0.2628, 0.2628, 0.2628])
    grad:  2.0 4.0 tensor([-1.9762, -0.9881, -0.4940])
    grad:  3.0 6.0 tensor([1.7568, 0.5856, 0.1952])
progress:  49 0.009525291621685028
    grad:  1.0 2.0 tensor([0.2655, 0.2655, 0.2655])
    grad:  2.0 4.0 tensor([-1.9663, -0.9832, -0.4916])
    grad:  3.0 6.0 tensor([1.7431, 0.5810, 0.1937])
progress:  50 0.00937769003212452
    grad:  1.0 2.0 tensor([0.2680, 0.2680, 0.2680])
    grad:  2.0 4.0 tensor([-1.9568, -0.9784, -0.4892])
    grad:  3.0 6.0 tensor([1.7299, 0.5766, 0.1922])
progress:  51 0.009236648678779602
    grad:  1.0 2.0 tensor([0.2704, 0.2704, 0.2704])
    grad:  2.0 4.0 tensor([-1.9476, -0.9738, -0.4869])
    grad:  3.0 6.0 tensor([1.7172, 0.5724, 0.1908])
progress:  52 0.00910158734768629
    grad:  1.0 2.0 tensor([0.2728, 0.2728, 0.2728])
    grad:  2.0 4.0 tensor([-1.9387, -0.9694, -0.4847])
    grad:  3.0 6.0 tensor([1.7050, 0.5683, 0.1894])
progress:  53 0.00897257961332798
    grad:  1.0 2.0 tensor([0.2750, 0.2750, 0.2750])
    grad:  2.0 4.0 tensor([-1.9301, -0.9651, -0.4825])
    grad:  3.0 6.0 tensor([1.6932, 0.5644, 0.1881])
progress:  54 0.008848887868225574
    grad:  1.0 2.0 tensor([0.2771, 0.2771, 0.2771])
    grad:  2.0 4.0 tensor([-1.9219, -0.9609, -0.4805])
    grad:  3.0 6.0 tensor([1.6819, 0.5606, 0.1869])
progress:  55 0.008730598725378513
    grad:  1.0 2.0 tensor([0.2792, 0.2792, 0.2792])
    grad:  2.0 4.0 tensor([-1.9139, -0.9569, -0.4785])
    grad:  3.0 6.0 tensor([1.6709, 0.5570, 0.1857])
progress:  56 0.00861735362559557
    grad:  1.0 2.0 tensor([0.2811, 0.2811, 0.2811])
    grad:  2.0 4.0 tensor([-1.9062, -0.9531, -0.4765])
    grad:  3.0 6.0 tensor([1.6604, 0.5535, 0.1845])
progress:  57 0.008508718572556973
    grad:  1.0 2.0 tensor([0.2830, 0.2830, 0.2830])
    grad:  2.0 4.0 tensor([-1.8987, -0.9493, -0.4747])
    grad:  3.0 6.0 tensor([1.6502, 0.5501, 0.1834])
progress:  58 0.008404706604778767
    grad:  1.0 2.0 tensor([0.2848, 0.2848, 0.2848])
    grad:  2.0 4.0 tensor([-1.8915, -0.9457, -0.4729])
    grad:  3.0 6.0 tensor([1.6404, 0.5468, 0.1823])
progress:  59 0.008305158466100693
    grad:  1.0 2.0 tensor([0.2865, 0.2865, 0.2865])
    grad:  2.0 4.0 tensor([-1.8845, -0.9423, -0.4711])
    grad:  3.0 6.0 tensor([1.6309, 0.5436, 0.1812])
progress:  60 0.00820931326597929
    grad:  1.0 2.0 tensor([0.2882, 0.2882, 0.2882])
    grad:  2.0 4.0 tensor([-1.8778, -0.9389, -0.4694])
    grad:  3.0 6.0 tensor([1.6218, 0.5406, 0.1802])
progress:  61 0.008117804303765297
    grad:  1.0 2.0 tensor([0.2898, 0.2898, 0.2898])
    grad:  2.0 4.0 tensor([-1.8713, -0.9356, -0.4678])
    grad:  3.0 6.0 tensor([1.6130, 0.5377, 0.1792])
progress:  62 0.008029798977077007
    grad:  1.0 2.0 tensor([0.2913, 0.2913, 0.2913])
    grad:  2.0 4.0 tensor([-1.8650, -0.9325, -0.4662])
    grad:  3.0 6.0 tensor([1.6045, 0.5348, 0.1783])
progress:  63 0.007945418357849121
    grad:  1.0 2.0 tensor([0.2927, 0.2927, 0.2927])
    grad:  2.0 4.0 tensor([-1.8589, -0.9294, -0.4647])
    grad:  3.0 6.0 tensor([1.5962, 0.5321, 0.1774])
progress:  64 0.007864190265536308
    grad:  1.0 2.0 tensor([0.2941, 0.2941, 0.2941])
    grad:  2.0 4.0 tensor([-1.8530, -0.9265, -0.4632])
    grad:  3.0 6.0 tensor([1.5884, 0.5295, 0.1765])
progress:  65 0.007786744274199009
    grad:  1.0 2.0 tensor([0.2954, 0.2954, 0.2954])
    grad:  2.0 4.0 tensor([-1.8473, -0.9236, -0.4618])
    grad:  3.0 6.0 tensor([1.5807, 0.5269, 0.1756])
progress:  66 0.007711691781878471
    grad:  1.0 2.0 tensor([0.2967, 0.2967, 0.2967])
    grad:  2.0 4.0 tensor([-1.8417, -0.9209, -0.4604])
    grad:  3.0 6.0 tensor([1.5733, 0.5244, 0.1748])
progress:  67 0.007640169933438301
    grad:  1.0 2.0 tensor([0.2979, 0.2979, 0.2979])
    grad:  2.0 4.0 tensor([-1.8364, -0.9182, -0.4591])
    grad:  3.0 6.0 tensor([1.5662, 0.5221, 0.1740])
progress:  68 0.007570972666144371
    grad:  1.0 2.0 tensor([0.2991, 0.2991, 0.2991])
    grad:  2.0 4.0 tensor([-1.8312, -0.9156, -0.4578])
    grad:  3.0 6.0 tensor([1.5593, 0.5198, 0.1733])
progress:  69 0.007504733745008707
    grad:  1.0 2.0 tensor([0.3002, 0.3002, 0.3002])
    grad:  2.0 4.0 tensor([-1.8262, -0.9131, -0.4566])
    grad:  3.0 6.0 tensor([1.5527, 0.5176, 0.1725])
progress:  70 0.007440924644470215
    grad:  1.0 2.0 tensor([0.3012, 0.3012, 0.3012])
    grad:  2.0 4.0 tensor([-1.8214, -0.9107, -0.4553])
    grad:  3.0 6.0 tensor([1.5463, 0.5154, 0.1718])
progress:  71 0.007379599846899509
    grad:  1.0 2.0 tensor([0.3022, 0.3022, 0.3022])
    grad:  2.0 4.0 tensor([-1.8167, -0.9083, -0.4542])
    grad:  3.0 6.0 tensor([1.5401, 0.5134, 0.1711])
progress:  72 0.007320486940443516
    grad:  1.0 2.0 tensor([0.3032, 0.3032, 0.3032])
    grad:  2.0 4.0 tensor([-1.8121, -0.9060, -0.4530])
    grad:  3.0 6.0 tensor([1.5341, 0.5114, 0.1705])
progress:  73 0.007263725157827139
    grad:  1.0 2.0 tensor([0.3041, 0.3041, 0.3041])
    grad:  2.0 4.0 tensor([-1.8077, -0.9038, -0.4519])
    grad:  3.0 6.0 tensor([1.5283, 0.5094, 0.1698])
progress:  74 0.007209045812487602
    grad:  1.0 2.0 tensor([0.3050, 0.3050, 0.3050])
    grad:  2.0 4.0 tensor([-1.8034, -0.9017, -0.4508])
    grad:  3.0 6.0 tensor([1.5227, 0.5076, 0.1692])
progress:  75 0.007156429346650839
    grad:  1.0 2.0 tensor([0.3058, 0.3058, 0.3058])
    grad:  2.0 4.0 tensor([-1.7992, -0.8996, -0.4498])
    grad:  3.0 6.0 tensor([1.5173, 0.5058, 0.1686])
progress:  76 0.007105532102286816
    grad:  1.0 2.0 tensor([0.3066, 0.3066, 0.3066])
    grad:  2.0 4.0 tensor([-1.7952, -0.8976, -0.4488])
    grad:  3.0 6.0 tensor([1.5121, 0.5040, 0.1680])
progress:  77 0.00705681974068284
    grad:  1.0 2.0 tensor([0.3073, 0.3073, 0.3073])
    grad:  2.0 4.0 tensor([-1.7913, -0.8956, -0.4478])
    grad:  3.0 6.0 tensor([1.5070, 0.5023, 0.1674])
progress:  78 0.007009552326053381
    grad:  1.0 2.0 tensor([0.3081, 0.3081, 0.3081])
    grad:  2.0 4.0 tensor([-1.7875, -0.8937, -0.4469])
    grad:  3.0 6.0 tensor([1.5021, 0.5007, 0.1669])
progress:  79 0.006964194122701883
    grad:  1.0 2.0 tensor([0.3087, 0.3087, 0.3087])
    grad:  2.0 4.0 tensor([-1.7838, -0.8919, -0.4459])
    grad:  3.0 6.0 tensor([1.4974, 0.4991, 0.1664])
progress:  80 0.006920332089066505
    grad:  1.0 2.0 tensor([0.3094, 0.3094, 0.3094])
    grad:  2.0 4.0 tensor([-1.7802, -0.8901, -0.4450])
    grad:  3.0 6.0 tensor([1.4928, 0.4976, 0.1659])
progress:  81 0.006878111511468887
    grad:  1.0 2.0 tensor([0.3100, 0.3100, 0.3100])
    grad:  2.0 4.0 tensor([-1.7767, -0.8883, -0.4442])
    grad:  3.0 6.0 tensor([1.4884, 0.4961, 0.1654])
progress:  82 0.006837360095232725
    grad:  1.0 2.0 tensor([0.3106, 0.3106, 0.3106])
    grad:  2.0 4.0 tensor([-1.7733, -0.8867, -0.4433])
    grad:  3.0 6.0 tensor([1.4841, 0.4947, 0.1649])
progress:  83 0.006797831039875746
    grad:  1.0 2.0 tensor([0.3111, 0.3111, 0.3111])
    grad:  2.0 4.0 tensor([-1.7700, -0.8850, -0.4425])
    grad:  3.0 6.0 tensor([1.4800, 0.4933, 0.1644])
progress:  84 0.006760062649846077
    grad:  1.0 2.0 tensor([0.3117, 0.3117, 0.3117])
    grad:  2.0 4.0 tensor([-1.7668, -0.8834, -0.4417])
    grad:  3.0 6.0 tensor([1.4759, 0.4920, 0.1640])
progress:  85 0.006723103579133749
    grad:  1.0 2.0 tensor([0.3122, 0.3122, 0.3122])
    grad:  2.0 4.0 tensor([-1.7637, -0.8818, -0.4409])
    grad:  3.0 6.0 tensor([1.4720, 0.4907, 0.1636])
progress:  86 0.00668772729113698
    grad:  1.0 2.0 tensor([0.3127, 0.3127, 0.3127])
    grad:  2.0 4.0 tensor([-1.7607, -0.8803, -0.4402])
    grad:  3.0 6.0 tensor([1.4682, 0.4894, 0.1631])
progress:  87 0.006653300020843744
    grad:  1.0 2.0 tensor([0.3131, 0.3131, 0.3131])
    grad:  2.0 4.0 tensor([-1.7577, -0.8789, -0.4394])
    grad:  3.0 6.0 tensor([1.4646, 0.4882, 0.1627])
progress:  88 0.0066203586757183075
    grad:  1.0 2.0 tensor([0.3135, 0.3135, 0.3135])
    grad:  2.0 4.0 tensor([-1.7548, -0.8774, -0.4387])
    grad:  3.0 6.0 tensor([1.4610, 0.4870, 0.1623])
progress:  89 0.0065881176851689816
    grad:  1.0 2.0 tensor([0.3139, 0.3139, 0.3139])
    grad:  2.0 4.0 tensor([-1.7520, -0.8760, -0.4380])
    grad:  3.0 6.0 tensor([1.4576, 0.4859, 0.1620])
progress:  90 0.0065572685562074184
    grad:  1.0 2.0 tensor([0.3143, 0.3143, 0.3143])
    grad:  2.0 4.0 tensor([-1.7493, -0.8747, -0.4373])
    grad:  3.0 6.0 tensor([1.4542, 0.4847, 0.1616])
progress:  91 0.0065271081402897835
    grad:  1.0 2.0 tensor([0.3147, 0.3147, 0.3147])
    grad:  2.0 4.0 tensor([-1.7466, -0.8733, -0.4367])
    grad:  3.0 6.0 tensor([1.4510, 0.4837, 0.1612])
progress:  92 0.00649801641702652
    grad:  1.0 2.0 tensor([0.3150, 0.3150, 0.3150])
    grad:  2.0 4.0 tensor([-1.7441, -0.8720, -0.4360])
    grad:  3.0 6.0 tensor([1.4478, 0.4826, 0.1609])
progress:  93 0.0064699104987084866
    grad:  1.0 2.0 tensor([0.3153, 0.3153, 0.3153])
    grad:  2.0 4.0 tensor([-1.7415, -0.8708, -0.4354])
    grad:  3.0 6.0 tensor([1.4448, 0.4816, 0.1605])
progress:  94 0.006442630663514137
    grad:  1.0 2.0 tensor([0.3156, 0.3156, 0.3156])
    grad:  2.0 4.0 tensor([-1.7391, -0.8695, -0.4348])
    grad:  3.0 6.0 tensor([1.4418, 0.4806, 0.1602])
progress:  95 0.006416172254830599
    grad:  1.0 2.0 tensor([0.3159, 0.3159, 0.3159])
    grad:  2.0 4.0 tensor([-1.7366, -0.8683, -0.4342])
    grad:  3.0 6.0 tensor([1.4389, 0.4796, 0.1599])
progress:  96 0.006390606984496117
    grad:  1.0 2.0 tensor([0.3161, 0.3161, 0.3161])
    grad:  2.0 4.0 tensor([-1.7343, -0.8671, -0.4336])
    grad:  3.0 6.0 tensor([1.4361, 0.4787, 0.1596])
progress:  97 0.0063657015562057495
    grad:  1.0 2.0 tensor([0.3164, 0.3164, 0.3164])
    grad:  2.0 4.0 tensor([-1.7320, -0.8660, -0.4330])
    grad:  3.0 6.0 tensor([1.4334, 0.4778, 0.1593])
progress:  98 0.0063416799530386925
    grad:  1.0 2.0 tensor([0.3166, 0.3166, 0.3166])
    grad:  2.0 4.0 tensor([-1.7297, -0.8649, -0.4324])
    grad:  3.0 6.0 tensor([1.4308, 0.4769, 0.1590])
progress:  99 0.00631808303296566
predict (after tranining)  4 8.544171333312988

損失值隨著迭代次數的增加呈遞減趨勢,如下圖所示:

可以看出:x=4時的預測值約為8.5,與真實值8有所差距,可通過提高迭代次數或者調整學習率、初始參數等方法來減小差距。

參考文獻:

  • [1] https://www.bilibili.com/video/av93365242

 到此這篇關於PyTorch反向傳播的文章就介紹到這瞭,更多相關PyTorch反向傳播內容請搜索WalkonNet以前的文章或繼續瀏覽下面的相關文章希望大傢以後多多支持WalkonNet!

推薦閱讀: