Python利用Seaborn繪制多標簽的混淆矩陣
Seaborn – 繪制多標簽的混淆矩陣、召回、精準、F1
導入seaborn\matplotlib\scipy\sklearn等包:
import seaborn as sns from matplotlib import pyplot as plt from scipy.special import softmax from sklearn.metrics import accuracy_score, confusion_matrix, precision_score, recall_score, f1_score sns.set_theme(color_codes=True)
從dataframe中,獲取y_true(真實標簽)和y_pred(預測標簽):
y_true = df["target"] y_pred = df['prediction']
計算驗證數據整體的準確率acc、精準率precision、召回率recall、F1,使用加權模式average=‘weighted’:
# 準確率acc,精準precision,召回recall,F1 acc = accuracy_score(df["target"], df['prediction']) precision = precision_score(y_true, y_pred, average='weighted') recall = recall_score(y_true, y_pred, average='weighted') f1 = f1_score(y_true, y_pred, average='weighted') print(f'[Info] acc: {acc}, precision: {precision}, recall: {recall}, f1: {f1}')
計算混淆矩陣:
# 橫坐標是真實類別數,縱坐標是預測類別數 cf_matrix = confusion_matrix(y_true, y_pred)
5類矩陣的繪制方案,混淆矩陣、百分比的混淆矩陣、召回矩陣、精準矩陣、F1矩陣:
- 混淆矩陣是計數,百分比的混淆矩陣是占比
- 召回矩陣是,每行的和是1,每行代表真實類別數,占比就是召回
- 精準矩陣是,每列的和是1,每列代表預測列表數,占比就是精準
- F1矩陣是按照 2PR/(P+R),註意為0的情況,需要補0,使用np.divide(a, b, out=np.zeros_like(a), where=(b != 0))
代碼如下:
# 橫坐標是真實類別數,縱坐標是預測類別數 cf_matrix = confusion_matrix(y_true, y_pred) figure, axes = plt.subplots(2, 2, figsize=(16*1.25, 16)) # 混淆矩陣 ax = sns.heatmap(cf_matrix, annot=True, fmt='g', ax=axes[0][0], cmap='Blues') ax.title.set_text("Confusion Matrix") ax.set_xlabel("y_pred") ax.set_ylabel("y_true") # plt.savefig(csv_path.replace(".csv", "_cf_matrix.png")) # plt.show() # 混淆矩陣 - 百分比 cf_matrix = confusion_matrix(y_true, y_pred) ax = sns.heatmap(cf_matrix / np.sum(cf_matrix), annot=True, ax=axes[0][1], fmt='.2%', cmap='Blues') ax.title.set_text("Confusion Matrix (percent)") ax.set_xlabel("y_pred") ax.set_ylabel("y_true") # plt.savefig(csv_path.replace(".csv", "_cf_matrix_p.png")) # plt.show() # 召回矩陣,行和為1 sum_true = np.expand_dims(np.sum(cf_matrix, axis=1), axis=1) precision_matrix = cf_matrix / sum_true ax = sns.heatmap(precision_matrix, annot=True, fmt='.2%', ax=axes[1][0], cmap='Blues') ax.title.set_text("Precision Matrix") ax.set_xlabel("y_pred") ax.set_ylabel("y_true") # plt.savefig(csv_path.replace(".csv", "_recall.png")) # plt.show() # 精準矩陣,列和為1 sum_pred = np.expand_dims(np.sum(cf_matrix, axis=0), axis=0) recall_matrix = cf_matrix / sum_pred ax = sns.heatmap(recall_matrix, annot=True, fmt='.2%', ax=axes[1][1], cmap='Blues') ax.title.set_text("Recall Matrix") ax.set_xlabel("y_pred") ax.set_ylabel("y_true") # plt.savefig(csv_path.replace(".csv", "_precision.png")) # plt.show() # 繪制4張圖 plt.autoscale(enable=False) plt.savefig(csv_path.replace(".csv", "_all.png"), bbox_inches='tight', pad_inches=0.2) plt.show() # F1矩陣 a = 2 * precision_matrix * recall_matrix b = precision_matrix + recall_matrix f1_matrix = np.divide(a, b, out=np.zeros_like(a), where=(b != 0)) ax = sns.heatmap(f1_matrix, annot=True, fmt='.2%', cmap='Blues') ax.title.set_text("F1 Matrix") ax.set_xlabel("y_pred") ax.set_ylabel("y_true") plt.savefig(csv_path.replace(".csv", "_f1.png")) plt.show()
輸出混淆矩陣、混淆矩陣(百分比)、召回矩陣、精準矩陣:
F1 Score:
到此這篇關於Python利用Seaborn繪制多標簽的混淆矩陣的文章就介紹到這瞭,更多相關Python Seaborn混淆矩陣內容請搜索WalkonNet以前的文章或繼續瀏覽下面的相關文章希望大傢以後多多支持WalkonNet!
推薦閱讀:
- Python機器學習應用之決策樹分類實例詳解
- Matplotlib繪制混淆矩陣的實現
- Python機器學習應用之基於LightGBM的分類預測篇解讀
- Python機器學習應用之基於天氣數據集的XGBoost分類篇解讀
- python數據可視化Seaborn畫熱力圖